Towards a Supersymmetric Doubled Worldsheet Formalism

Alexander Sevrin
in collaboration with Dan Thompson arXiv:1305.4848, 1305.4853 [hep-th] and forthcoming.
Vrije Universiteit Brussel and

The International Solvay Institutes for Physics and Chemistry
Also at the Universities of Leuven and Antwerp
March 2014 / Round Table Dubna

Introduction

- Non-geometric compactifications.
- The recent results on double field theory of Zwiebach, Hohm, Siegel, Hull, ... point to the existence of a "stringy" generalized geometrical framework.
- Many expressions appearing in double field theory - even for the non-supersymmetric case - are reminiscent of generalized Kähler and Calabi-Yau geometry found in $N=(2,2), d=2$ non-linear σ-models...
- Try to get a handle on this - at least for the NSR sector by means of a manifest T-dual invariant, $N=(2,2)$ worldsheet description (both classical and quantum, inspired by Tseytlin, Hull, ...).

Introduction: T-duality

- Consider a space-time with one coordinate y compactified on a circle with radius R : $y=y+2 \pi R$. Denote the other coordinates by x. Take a massless scalar field $\varphi(x, y)$:

$$
\varphi(x, y)=\sum_{n \in \mathbb{Z}} \varphi_{n}(x) e^{i n y / R}
$$

$\varphi_{n}(x)$ has mass M :

$$
M^{2}=\frac{n^{2}}{R^{2}}
$$

When $R \rightarrow 0$ we end up with a theory in $d-1$ dimensions.

Introduction: T-duality

- The situation changes when we consider a closed string instead of a point particle. A string can wind around a compact direction. For a string with winding number m, the mass formula changes to (α^{\prime} is the length squared of the string),

$$
M^{2}=\frac{n^{2}}{R^{2}}+\frac{m^{2} R^{2}}{\alpha^{\prime 2}}+\cdots
$$

- T-duality:

$$
\begin{aligned}
& m \leftrightarrow n \\
& R \rightarrow \frac{\alpha^{\prime}}{R}
\end{aligned}
$$

- This can be generalized to non-trivial backgrounds having a number of (abelian) isometries.

Buscher rules

- In the RNS formulation, bosonic strings propagating on a manifold M are characterized by a metric g, a closed 3 -form $T=d b$ and a dilaton Φ. Assume now a number p of (abelian) isometries and go to adapted coordinates: x^{a}, $y^{i}(i \in\{1, \cdots p\}, a \in\{1, \cdots d-p\})$ such that neither g, b nor Φ depend on the y-coordinates (we always assume that the background fields do depend on the x-coordinates). Isometry:

$$
y^{i} \rightarrow y^{i}+\xi^{i} .
$$

- Buscher procedure: promote the isometry to a gauge symmetry \& using Lagrange multipliers impose that the gauge fields are pure gauge.
- Integrate over the Lagrange multipliers \Rightarrow original model, integrate over the gauge fields \Rightarrow T-dual mode!!

Buscher rules

- Introduce $e \equiv g+b$. Original model: $E_{i j} \equiv e_{i j}, M_{i b} \equiv e_{i b}$, $N_{a j} \equiv e_{a j}$ and $F_{a b} \equiv e_{a b}$. Dual model:

$$
\begin{aligned}
& \tilde{E}=E^{-1} \\
& \tilde{N}=E^{-1} M \\
& \tilde{N}=-N E^{-1} \\
& \tilde{F}=F-N E^{-1} M
\end{aligned}
$$

The dilaton transforms as well.

- To simplify the expressions we assume $N=M=0$.

Buscher rules

- T-duality transformations form an $O(p, p, \mathbb{Z})$ group (includes large diffeomorphisms and constant b-shifts as well). Introduce η and $G \in O(p, p, \mathbb{Z})$,

$$
\eta=\left(\begin{array}{ll}
0 & \mathbf{1} \\
\mathbf{1} & 0
\end{array}\right), \quad G=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right), \quad G^{T} \eta \boldsymbol{G}=\eta .
$$

- $E_{i j}=g_{i j}+b_{i j}$ transforms non-linearly under $O(p, p, \mathbb{Z})$:

$$
\tilde{E}=(A E+B)(C E+D)^{-1} .
$$

Buscher rules

- Introduce \mathcal{H},

$$
\mathcal{H}=\left(\begin{array}{cc}
g-b g^{-1} b & -b g^{-1} \\
g^{-1} b & g^{-1}
\end{array}\right)
$$

- \mathcal{H} transforms linearly under $O(p, p, \mathbb{Z})$:

$$
\tilde{\mathcal{H}}=G^{\top} \mathcal{H} G .
$$

- Note that $\mathcal{S} \equiv \eta \mathcal{H}$ satisfies $\mathcal{S}^{2}=\mathbf{1}$.
- Doubled formalism (Tseytlin, Hull, ...): make $O(p, p, \mathbb{Z})$ invariance manifest.

Doubled formalism

- Double the coordinates: y^{i} and \tilde{y}_{i}. Introduce \mathbb{Y},

$$
\mathbb{Y}=\binom{y}{\tilde{y}}
$$

- The doubled worldsheet lagrangian is now,

$$
\mathcal{L}=\frac{1}{2} \partial_{\neq} \mathbb{Y}^{\top} \mathcal{H} \partial_{=} \mathbb{Y}+\mathcal{L}(x),
$$

where we used worldsheet light-cone coordinates:
$\sigma^{\ddagger}=\tau+\sigma$ and $\sigma^{=}=\tau-\sigma$.

- In order to be equivalent with the original theory, this has to be supplemented with p constraints.

Doubled formalism

- Use the almost product structure $\mathcal{S}=\eta \mathcal{H}$ to introduce the projection operators $\mathbb{P}_{ \pm}$:

$$
\mathbb{P}_{ \pm} \equiv \frac{1}{2}(1 \pm \mathcal{S})
$$

and the constraints are given by,

$$
\mathbb{P}_{+} \partial_{=} \mathbb{Y}=\mathbb{P}_{-} \partial_{\neq} \mathbb{Y}=0
$$

In a more recognizable form they can be rewritten as,

$$
\partial_{\neq} \tilde{y}=(g-b) \partial_{\neq} y \quad \partial_{=} \tilde{y}=-(g+b) \partial_{=} y .
$$

- Can this be rewritten in a first order form? Chiral boson!

Digression: chiral bosons in $d=2$

- Floreanini-Jackiw:

$$
\mathcal{L}=\partial_{\tau} \phi \partial_{\sigma} \phi-\partial_{\sigma} \phi \partial_{\sigma} \phi .
$$

Eq. of motion:

$$
\partial_{\sigma} \partial_{=} \phi=0 \rightarrow \partial_{=} \phi=g(\tau),
$$

where $g(\tau)$ can be put to zero by a gauge choice.

$$
\Rightarrow \partial_{=}=\phi=0 \leftrightarrow \text { chiral boson. }
$$

- Floreanini-Jackiw is not Lorentz invariant. Lorentz invariant formulation? Yes: Siegel \& PST.

Digression: chiral bosons in $d=2$

- Siegel:

$$
\mathcal{L}=\partial_{\mp} \phi \partial_{=} \phi-h_{\neq \mp} \partial_{=} \phi \partial_{=} \phi .
$$

Gauge invariance (chiral gravity):

$$
\begin{aligned}
\delta \phi & =\varepsilon^{=} \partial_{=} \phi, \\
\delta h_{\not \mp \ddagger} & =\partial_{\neq} \varepsilon^{=}+\varepsilon^{=} \partial_{=} h_{\neq \mp}-\partial_{=} \varepsilon^{=} h_{\neq \neq}
\end{aligned}
$$

Make gauge choice $h_{\neq \neq}=1 \Rightarrow$ Floreanini-Jackiw.

Digression: chiral bosons in $d=2$

- PST: Introduce a Beltrami like parameterization for $h_{\neq \ddagger}$:

$$
\begin{gathered}
h_{\neq \ddagger}=\frac{\partial_{\neq} f}{\partial_{\ddagger} f} . \\
\mathcal{L}=\partial_{\mp} \phi \partial_{=} \phi-\frac{\partial_{\neq} f}{\partial_{\#} f} \partial=\phi \partial_{=} \phi,
\end{gathered}
$$

PST gauge invariance:

$$
\begin{aligned}
\delta f=\varepsilon^{=} \partial_{=} f & \rightarrow \delta f=\xi, \\
\delta \phi=\varepsilon^{=} \partial_{=} \phi & \rightarrow \delta \phi=\xi \frac{\partial_{=} \phi}{\partial_{=} f} .
\end{aligned}
$$

- Can we do this for the doubled formalism?

First order doubled formalism

- Introduce $h_{\neq \neq}$and $h_{==}$transforming as,

$$
\begin{aligned}
& \delta h_{\neq \neq}=\partial_{\neq} \varepsilon^{=}+\varepsilon^{=} \partial_{=} h_{\neq \neq}-\partial_{=} \varepsilon^{=} h_{\neq \neq}, \\
& \delta h_{==}=\partial_{=} \varepsilon^{\ddagger}+\varepsilon^{\ddagger} \partial_{\neq} h_{==-}-\partial_{\neq} \varepsilon^{\ddagger} h_{==},
\end{aligned}
$$

and repeat Siegel's construction.

- Works only when \mathcal{H} is constant. Instead one requires,

$$
h_{\neq \ddagger} h_{==}=1 \Rightarrow \varepsilon^{=}=\varepsilon^{\ddagger} h_{\neq \neq} .
$$

First order doubled formalism

- This immediately gives the doubled formalism in a PST like formulation:

$$
\begin{aligned}
\mathcal{L}= & \frac{1}{2} \partial_{\neq} \mathbb{Y}^{T} \mathcal{H} \partial_{=} \mathbb{Y}-\frac{1}{2} \frac{\partial_{\neq} f}{\partial_{=} f} \partial_{=} \mathbb{Y} \eta \mathbb{P}_{+} \partial_{=} \mathbb{Y} \\
& +\frac{1}{2} \frac{\partial_{=} f}{\partial_{\neq} f} \partial_{\neq} \mathbb{Y} \eta \mathbb{P}_{-} \partial_{\neq} \mathbb{Y}+\mathcal{L}(x)
\end{aligned}
$$

- Gauge invariance:

$$
\begin{aligned}
\delta \mathbb{Y} & =\frac{\xi}{\partial_{=} f} \mathbb{P}_{+} \partial_{=} \mathbb{Y}+\frac{\xi}{\partial_{\neq} f} \mathbb{P}_{-} \partial_{\neq} \mathbb{Y} \\
\delta f & =\xi
\end{aligned}
$$

First order doubled formalism

- Additional gauge invariance:

$$
\begin{aligned}
\delta \mathbb{Y} & =\zeta(f) \\
\delta f & =0
\end{aligned}
$$

- Floreanini-Jackiw like formulation by making the gauge choice $\partial_{\sigma} f=0$:

$$
\mathcal{L}=\frac{1}{4}\left(\partial_{\sigma} \mathbb{Y}^{T} \eta \partial_{\tau} \mathbb{Y}-\partial_{\sigma} \mathbb{Y}^{T} \mathcal{H} \partial_{\sigma} \mathbb{Y}\right)+\mathcal{L}(x)
$$

which was the starting point of numerous investigations.

- Can we repeat this in $N=(2,2)$ superspace? Turns out to be very hard - surprisingly enough even going to $N=(1,1)$ is very tough...

$N=(2,2)$ superspace

- Coordinates: $\sigma^{\ddagger}, \sigma^{=}, \theta^{+}, \theta^{-}, \hat{\theta}^{+}, \hat{\theta}^{-}$and we introduce D_{+}, D_{-}, \hat{D}_{+}and \hat{D}_{-}satisfying,

$$
D_{+}^{2}=\hat{D}_{+}^{2}=-\frac{i}{2} \partial_{\neq}, \quad D_{-}^{2}=\hat{D}_{-}^{2}=-\frac{i}{2} \partial_{=}
$$

- Action:

$$
\mathcal{S}=\int d^{2} \sigma d^{2} \theta d^{2} \hat{\theta} \mathcal{V}(X)
$$

- \mathcal{V} can only be some function of the scalar superfields \Rightarrow constraints needed! In $d=2, N=(2,2)$ there are numerous types of superfields. Here: only superfields satisfying constraints linear in the derivatives. Sufficient to describe all $N=(2,2)$ non-linear σ-models (Lindström, Roček, von Unge, Zabzine '05) (AS, Troost '96).

$N=(2,2)$ superfields

- Constrain both chiralities:

$$
\hat{D}_{+} X^{a}=J_{+b}^{a}(X) D_{+} X^{b}, \quad \hat{D}_{-} X^{a}=J_{-b}^{a}(X) D_{-} X^{b} .
$$

- Integrability conditions $\Rightarrow J_{+}$and J_{-}are commuting complex structures which can be simultaneously diagonalized.

$N=(2,2)$ superfields

- Chiral superfields z and $\bar{z}=z^{\dagger}$:

$$
\hat{D}_{ \pm} z=+i D_{ \pm} z, \quad \hat{D}_{ \pm} \bar{z}=-i D_{ \pm} \bar{z}
$$

- Twisted chiral superfields (Gates, Hull, Roček, '84) w and $\bar{w}=w^{\dagger}:$

$$
\hat{D}_{ \pm} w= \pm i D_{ \pm} w, \quad \hat{D}_{ \pm} \bar{W}=\mp i D_{ \pm} \bar{W} .
$$

$N=(2,2)$ superfields

- Constrain only one chirality: Semi-chiral superfields (Buscher, Lindström, Roček, '88) $I, r, \bar{l}=I^{\dagger}$ and $\bar{r}=r^{\dagger}$:

$$
\begin{array}{ll}
\hat{D}_{+} l=+i D_{+} l, & \hat{D}_{-} r=+i D_{-} r, \\
\hat{D}_{+} \bar{I}=-i D_{+} l, & \hat{D}_{-} \bar{r}=-i D_{-} r .
\end{array}
$$

- All $N=(2,2)$ non-linear σ-models can be described in terms of chiral, twisted chiral and semi-chiral superfields. (Lindström, Roček, von Unge, Zabzine '07; AS, J. Troost, '96)
- For chiral and twisted superfields the constraints eliminate $3 / 4$ of the components while for semi-chiral superfields only half are eliminated (the rest are $N=(1,1)$ auxiliary superfields).

T-duality in $N=(2,2)$ superspace

T-duality in $N=(2,2)$ superspace changes the nature of the superfields:

- Chiral \leftrightarrow twisted chiral (Gates, Hull, Roček, '84)

$$
V(w+\bar{w}, \cdots) \leftrightarrow \tilde{V}(z+\bar{z}, \cdots)
$$

- Chiral + twisted chiral \leftrightarrow semi-chiral (Grisaru, Massar, AS, Troost, '98)

$$
\begin{gathered}
V(z+\bar{z}, w+\bar{w}, i(z-\bar{z}-w+\bar{w}), \cdots) \leftrightarrow \\
\tilde{V}(I+\bar{l}, r+\bar{r}, i(I-\bar{I}-r+\bar{r}), \cdots)
\end{gathered}
$$

An example: $S U(2) \times U(1)=S^{3} \times S^{1}$

- Parameterization:

$$
g=e^{i \rho}\left(\begin{array}{cc}
\cos \psi e^{-i \varphi_{1}} & \sin \psi e^{i \varphi_{2}} \\
-\sin \psi e^{-i \varphi_{2}} & \cos \psi e^{i \varphi_{1}}
\end{array}\right)
$$

and

$$
\varphi_{1}, \varphi_{2}, \rho \in \mathbb{R} \bmod 2 \pi \text { and } \psi \in[0, \pi / 2]
$$

- Can be described in terms of a chiral z and twisted chiral w superfield (Roček, Schoutens, AS '91)

$$
z=i \rho+\varphi_{2}-i \ln \sin \psi, \quad w=i \rho+\varphi_{1}-i \ln \cos \psi
$$

- Generalized Kähler potential:

$$
\mathcal{V}=\int^{i(z-\bar{z}-w+\bar{w})} d q \ln \left(1+e^{q}\right)-\frac{1}{2}(w+\bar{w})^{2}
$$

An example: $S U(2) \times U(1)=S^{3} \times S^{1}$

- The isometry $z \rightarrow z+i \xi, w \rightarrow w+i \xi$, corresponds to moving along the S^{1} of $S^{3} \times S^{1}$. Dualizing along this isometry sends S^{1} to S^{1} and provides an alternative description of the σ-model in terms of a semi-chiral multiplet. (Troost, AS '96) (AS, Staessens, Terryn '11) (Roček, Lindström '11)

Outlook

- Can we write down a manifest T-dual invariant formulation in $N=(2,2)$ superspace?
- Requires more than just doubling the coordinates on which the isometries act. Full superfields are doubled (over doubling). E.g. $V(z+\bar{z}, \cdots) \leftrightarrow \tilde{V}(w+\bar{w}, \cdots)$, doubled formulation will contain both z and w.
- Full answer not known yet but a simple example shows already some of the main features.

A simple example

- Chiral field z, twisted chiral field w.
- Original potential,

$$
V(z+\bar{z})=\int^{z+\bar{z}} d q F(q)
$$

- T-dual potential:

$$
\tilde{V}(w+\bar{w})=-\int^{w+\bar{w}} d \tilde{q} F^{-1}(\tilde{q})
$$

A simple example

- Doubled potential \mathbb{V} :

$$
\mathbb{V}=\frac{1}{2} V(z+\bar{z})+\frac{1}{2} \tilde{V}(w+\bar{w})
$$

and constraint,

$$
w+\bar{w}=F(z+\bar{z})
$$

- The constraint,

$$
w+\bar{w}=F(z+\bar{z}) .
$$

eliminates the "over doubled coordinates" and implies Hull's constraints, act on it with \hat{D}_{+}and \hat{D}_{-}:

$$
D_{ \pm}(w-\bar{w})= \pm F^{\prime}(z+\bar{z}) D_{ \pm}(z-\bar{z})
$$

Open ending

- The first order PST like formulation of these models is hard and currently under construction (AS, Thompson). Even the Floreanini-Jackiw formulation in $N=(1,1)$ superspace is not known...
- Once this is done the 1-loop β-functions can be computed and the resulting quantum geometry can be compared to the geometry being developed by Zwiebach, Hohm and collaborators.
- To be continued...

